T

The Bad Nelghbor

Who | am

- Sophia D’Antoine

- Security Researcher at Trail of Bits

- Masters in Computer Science from RPI
- Thesis on Hardware Side Channels

- | play CTF

Overview

- Side channel attacks

- Side channel mediums: Hardware
- Vulnerabilities in the cloud

- Demo

- Defenses

- The future

What are side channel attacks?

Attacks:
Leak information from or alter behavior of a system or process.

Side channel:
Attack does not alter or introspect into the program itself.

What are side channel attacks?

- Attacker can observe the target system. Must be ‘neighboring’ or
co-located.
- Ability to repeatedly query the system for leaked artifacts.

Artifacts: changes in how a process interacts with the computer

Variety of Side Channels

Different target systems implies different methods for observing.

e Fault attacks
o Requires access to the hardware.
e Simple power analysis
o Requires proximity to the system.
o Power consumption measurement mapped to behavior.
e Different power analysis
o Requires proximity to the system.
o Statistics and error correction gathered over time.
e Timing attacks

o Requires same process co-location.
o Network packet delivery, cache misses, resource contention.

Example targeting Cryptography

“In cryptography, a side-channel
attack is any attack based on © 1010000001 010100101 1 101001, 1 1
information gained from the physical | i : | |
implementation of a cryptosystem”

- Medium matters
- Attackers have ability to

RSA bits leaked through Power
measure system as black box Analysis

What happens

Information gained through recordable changes in the system

Powered sampled

N . at even intervals
Implementation: > > T _
The Black Box across time.

Basic side channel requirements

e Medium agnostic Target Malicious actor

e Side channels require 3
primitives:
- Transmit
- Receive

- Shared environment

Types of side channel attacks: Scenario 1

Receiver (Eavesdropper):
Record information from the shared environment.

Transmitter: Unaware target. Operating as normal.

Applications include:

- crypto key theft

- process monitoring
- environment keying
- broadcast signal

Types of side channel attacks: Scenario 2

Receiver (Unaware):
Non-existent. All other processes on system do not intentionally
record artifacts.

Transmitter (Aware): Intentionally sends
artifacts into the shared environment.

Applications include:

- DoS attack
- Proof of co-residency

Types of side channel attacks: Scenario 3

Receilver:
Records system artifacts and translates into a meaningful message.

Transmitter:
Intentionally sends artifacts into the shared environment.

Caveats: All processes to have both and agree on time, pre-arrange message
translation.

Types of side channel attacks: Scenario 3

Applications Include: Communication channel.

VM1 VM2 Client

- J
\\ \\ /
\ \ z//’

Communication Medium

Virtual
Allocations

Shared
Hardware

Overview

- Side channel attacks

- Side channel mediums: Hardware
- Vulnerabilities in the cloud

- Demo

- Defenses

- The future

Communication Between Processes
Using Hardware

Malicious Malicious
Transmitter Receiver

Available Hardware

Shared environment on computers, accessible from software processes.
Hardware resources shared between processes.

- Processors (CPU/ GPU)
- Cache Tiers

- System Buses

- Main Memory

- Hard Disk Drive

Hardware side channels compared to other types

Sender (Transmitter) process

- Affect the state of the shared hardware
- Must be observable/ recordable from other processes
- Repeatable

Receiver process

- Record the state of the shared
hardware

- Must observe without affecting the
transmitted state.

Side Channel attacks over Hardware
Primitives

- Processes share hardware resources
- Dynamic translation based on need

- Allocation causes contention

Physical co-location leads to side channel
vulnerabilities.

The Cloud

DEMAND A SAFER CLOUD

client-sige encryption, server-side computation

beginning with encrypted search

=t —
LEARMN MORE" |

Overview

- Side channel attacks

- Side channel mediums: Hardware
- Vulnerabilities in the cloud

- Demo

- Defenses

- The future

Cloud Computing (laaS)

Perfect environment for hardware
based side channels:

Operating
System

- Virtual instances

- Hypervisor schedules resources
between all processors on a
server

Operating
System

Dynamic allocation
Operating
System

.
ey
@
\

- Reduces cost

Virtualization Layer

Vulnerable Scenarios in the Cloud

Sensitive data stored remotely
Vulnerable host

Untrusted host

Co-located with a foreign VM

€ ™
. VM VM VM VM VM
\._ i i b i 1 i 4 _)
Yy Y Y Y v
VMM: XEN (physical resource allocation)
A @ A
f Core 1 Core 2 Core 3 \

| L1 Cache I | L1 Cache I | L1 Cache |
L2 Cache L2 Cache L2 Cache

L3 Cache

Main Memory

\&

1/

Software

Hardware

Neighbor virtual machines

Sharing hardware allocations.

1st Partition of a Nth Partition of a
Virtual Machine Instance Virtual Machine Instance

Hypervisor (Virtualization Layer)

Shared
Physical
Layer

Hardware Side Channels in the Cloud

Cloud Computing Side Channel - Primitives

Medium: Shared artifact from a hardware unit

Cross VM: Virtual machine or process

Method: Information gained through recordable changes in the system
Vulnerability: Translation between physical and virtual, dynamic!

Cloud Computing Side Channel

Shared hardware
Dynamically allocated hardware resources
Co-Location with adversarial VMs, infected VMs, or Processes (requires SMT)

VM VM VM VM VM

-

E P

H H

Build Your Own Side Channel: Hardware

Choose Medium: Measure shared hardware unit’s changes over time

- Cache

- Processor

- System Bus

- Main Memory
- HDD

Build Your Own Side Channel: Measurement

Choose Vulnerability: Measure artifact of shared resource.

- Timing attacks (usually best choice)
Cache misses, stored value farther away in memory

- Value Errors

Computation returns unexpected result
- Resource contention

Locking the memory bus

- Other measurements recordable from inside a process, in a VM

Build Your Own Side Channel: Attack Model

Choose S/R Model: What processes are involved in creating the channel depend
on intended use cases.

- Scenario 1: Transmit only
Application: DoS Attack
Sender only

- Scenario 2: Record Measurements
Application: Crypto key theft
Receiver only

- Scenario 3: Bi-way Channel

Application: Communication channel
Sender and Receiver

Some channels are easier than others....

Case Study 1: Locking the memory bus

- Pro: efficient, no noise, good bandwidth
- Con: highly noticeable

Case Study 2: Everyone loves Cache.

- Pro: hardware medium is ‘static’
- Con: most common, mitigations are quickly developed

Some channels are easier than others....

Technical Difficulties:
e Querying the specific hardware unit
e Difficulty/ reliability unique to each hardware unit
e Number of repeated measurements possible
e Frequency of measurements allowed

Measurement methods for different hardware units

Hardware Medium Transmitting Mechanism | Reception Mechanism

Processor Processor Register and Time Compared Against
Functional Unit Resources | Threshold
Contention

Cache Tier Prime-Probe, Shared Time Compared Against
Cache Functionality Threshold

System Bus System Bus Restricted Measurement of Memory
Access Contention Access Capabilities

Main Memory Prime-Probe, Shared Main | Measurement of Memory
Memory Storage Access Capabilities

Hard Disk Drive Prime-Probe, Shared Disk | Time Compared Against
Drive Data Access Threshold

Measurement methods for different hardware units

Medium Transmission |Reception |Constraints
Need to Share
L1 Cache Prime Probe Timing Processor Space
Caches Missing Causes
L2 Cache Prime Probe/ Preemption Timing Noise
Measure Address Peripheral Threads
Main Memory SMT Paging Space Create Noise

Memory Bus

Lock & Unlock Memory Bus

Measure Access

Halts all Processes
Requiring the Bus

CPU Functional

mo' Threads, mo'

Units Resource Eviction & Usage Timing Problems
Hard Disc Contention - Dependent on multiple
Hard drive Access Files Frantically Timing readings of files

Overview

- Side channel attacks

- Side channel mediums: Hardware
- Vulnerabilities in the cloud

- Demo

- Review of discovery primitives

- Defenses

- The future

Example: Probing the Cache

Applied to a L1 cache side channel

Measurement Stage

Co-Resident ;2::11,1
VM's side-channel
robin L1-Cache
P g Measurements
Inferred
Phase 2 Phase 3 Phase 4 Code-Path
—>»| Cache pattern > Noise —>» Code-path pP—>
classifications Reduction reassembly

Analysis Stages

Demo 1: Side channel setup

Medium: Shared L3 Cache Tier

Vulnerability: Timing attacks
Cache misses, stored value farther away in memory

Model: Scenario 2 Record Measurements

Application: Crypto key theft
Receiver only

General setup: Cross processes.

Demo 1: Flush+Reload Attack [1]

Receiver: ‘Attacking’ Process

- forcing victim code out of the L3 Cache
- measuring time it takes to access it

Transmitter: Victim process

- performing RSA encryption
- uses target code between the flush and reload of adversary

Requires:

- Timing
- Knowledge of target code

1. Yuval Yarom, Katrina Falkner. July 18, 2013. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack.

http://eprint.iacr.org/2013/448.pdf

Demo 1: Measuring the L3 Cache Tier

Sources

- https://defuse.ca/flush-reload-side-channel.htm
- https://github.com/DanGe42/flush-reload

https://defuse.ca/flush-reload-side-channel.htm
https://defuse.ca/flush-reload-side-channel.htm
https://github.com/DanGe42/flush-reload
https://github.com/DanGe42/flush-reload

Demo 1: Results

- Successfully leaked the private key from the GnuPG
- Leaked 96.7% bits of the secret key

Adversary VM Victim VM

\44

L3 Cache Line | deCFU ptiOn rOUﬂd

Demo 2: Side channel setup

Medium: CPU Pipeline

Vulnerability: Erroneous Values
SMT optimizations, different values possible

Model: Scenario 3

Application: Communicate a signal.
Sender and receiver

General setup: Cross VM.

Out-of-Order-Execution

Demo 2: Out-of-Order Execution Attack

Receiver: Measuring Process

- Hardware medium must be measured dynamically unlike the cache.
- Instruction order, results from instruction sets

Transmitter: Sending process

- Force the pipeline state to optimize a certain way.....
- Or not optimize, memory fences

Requires:

- Timing
- Pre-arranged encoding

1. D’Antoine Sophia May 21, 2015. Exploiting processor side channels to enable cross VM malicious code execution

http://digitool.rpi.edu:8881/R/R7PAMYCQ2MQ78Y35QTL9MX9V36AQQHM7URJ6STPX1EFDB56HUJ-01357?func=dbin-jump-full&object_id=175977&local_base=GEN01&pds_handle=GUEST

Demo 2: Transmitting out-of-order-executions

Force Deterministic Memory Reordering:
- Compile-time vs Runtime Reordering
Runtime:

- Usually strong memory model: x86/64 (mostly sequentially consistent)
- Weaker models (data dependency re-ordering): arm, powerpc

Barriers: acquire semantics
P E—— e
- 4 types of run time reordering barriers v #LoadLoad : #LoadStore | ;
........................ Hessssssnsssssssssssssde®
#StoreLoad : #StoreStore ;

ralescae camantics

Demo 2: Transmitting out-of-order-executions

Force Out of Order Execution: Memory fences

... mov dword ptr [_spin1], O
Mfence: ... mfence
- x86 instruction full memory barrier ... mov dword ptr [_spin2], 0
- prevents memory reordering of any kind ... mfence

- order of 100 cycles per operation

Lock-free programming on SMT multiprocessors

Demo 2: Receiving out-of-order-executions

8234 Loads May Be Reordered with Earlier Stores to Different Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location.
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following
example:

Example 8-3. Loads May be Reordered with Older Stores

Processor 0 Processor 1

mov [_x], 1 mov [_y], 1
mov r1,[_yl] mov r2,[_Xx]

Initially x =y =0
ri =0 andr2 =0 is allowed

Synched

Asynched

Out of
Order
Execution

THREAD 1 THREAD 2

store [X], 1 store [Y], 1

load 1, [Y] load r2, [X]

store [X], 1

load 1, [Y] store [Y], 1
load r2, [X]

load 1, [Y] load r2, [X]

store [X], 1 store [Y], 1

M=r2=1
M=0r2=1
M=r2=0

Demo 2: Hardware Architectures

Core

Core 0 Core 1

Core 0 Core 1

Core 0 Core 1

[L1cache |

[L1 cache | [L1 cache

| L1 cache | [L1cache

[L1 cache | [L1cache

LZ cache

L2 cache L2 cache

L2 cache

L2 cache L2 cache

L3 cache L3 cache

single core

Lab Setup:

Notes:

AMD Optetran, Athlan

Intel’s Core Duo, Xeon Architecture
Each processor has two cores

The Xen hypervisor schedules between all processors on a server
Each core then allocates processes on its pipeline

ntel Core Duo, Xeon

- Multiple processes run on a single pipeline (SMT)
- Relaxed memory model

fintel ftanivm 2

Demo 2: VM Processor Contention

VM VM VM J

4 w— I

Pipeline

oMT Core01 || Core0?2 Executing

Optimizes |
Shared Instructions

Processor om e
N

Demo 2: VM Processor Contention

Demo 2: Measuring the Pipeline

Sources & Paper

- http://www.sophia.re/SC

http://www.sophia.re/SC
http://www.sophia.re/SC

Demo 2: Results

=]

RN

0.00014
0.00012

dAouanbauy Joon

Process changes signature of queried hardware unit over time

lterations

Demo 2: Results

Benefits:

Harder for a intelligent hypervisor to detect, quiet
Eavesdropping sufficiently mutilates channel
System artifacts sent and queried dynamically
Not affected by cache misses

Channel amplified with system noise

Overview

- Side channel attacks

- Side channel mediums: Hardware
- Vulnerabilities in the cloud

- Demo

- Defenses

- The future

Defensive mechanisms: Hardware

Protected Resource Ownership:

- Isolating VM’s '

NN\ \\\k\\\\\\\\\\\s ;«_\} ¥

- Turn off hyperthreading

- Blacklisting resources for
concurrent threads

- Downside: removes optimizations
or benefits of the cloud

Defensive mechanisms: Hypervisor

Anomaly detection:

- Specification

- Pattern recognition

- Records average OoOE patterns
- Predicts what to expect

Defensive mechanisms: Software

Control Flow Changes:

- Hardening software with Noise
- Force specific execution patterns (i.e. constant time loops, ...)
- Avoid using certain resources

- Downside: compiler, hardware optimizations lost

Overview

- Side channel attacks

- Side channel mediums: Hardware
- Vulnerabilities in the cloud

- Demo

- Defenses

- The future

Our Future in the Cloud

Side Channel Potential:

- More resource sharing

- More dynamic optimizations
- Virtualization more popular
- Malware

Things to Consider:

- Cloud Side Channels apply to anything with virtualization (i.e. VM'’s)
- Hypervisors are easy targets: Vulnerable host

i.e. “Xenpwn”, paravirtualized driver attack: INFILTRATECon 2016

Conclusion

- What is a side channel

- Primitives for hardware based side channels
- Co-location
- Medium
- Transmit the artifact
- Record/ observe the artifact

- Different mediums in the cloud
- Variety of possible attacks
- Cross VM and process

Acknowledgements
Jeremy Blackthorne ,
RPISEC , ‘
Tralil of Bits |
OF, T‘I

5

Any Questions?

IRC: quend
Email: sophia@trailofbits.com
Website: http://sophia.re/SC

mailto:sophia@trailofbits.com
http://sophia.re/SC

References

https://www.usenix.org/system/files/conference/usenixsecurity14/secl4-paper-yarom.pdf
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://preshing.com/20120913/acquire-and-release-semantics/
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://preshing.com/20120930/weak-vs-strong-memory-models/
http://en.wikipedia.org/wiki/Memory_barrier#An_illustrative_example
http://preshing.com/20120710/memory-barriers-are-like-source-control-operations/
http://gauss.ececs.uc.edu/Courses/c653/lectures/SideC/intro.pdf
https://www.ernw.de/download/xenpwn.pdf

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://preshing.com/20120913/acquire-and-release-semantics/
http://preshing.com/20120913/acquire-and-release-semantics/
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://preshing.com/20120930/weak-vs-strong-memory-models/
http://preshing.com/20120930/weak-vs-strong-memory-models/
http://en.wikipedia.org/wiki/Memory_barrier#An_illustrative_example
http://en.wikipedia.org/wiki/Memory_barrier#An_illustrative_example
http://preshing.com/20120710/memory-barriers-are-like-source-control-operations/
http://preshing.com/20120710/memory-barriers-are-like-source-control-operations/

Extra Slides

Receiver: Record out of order executions

int X,Y,count_Oo0OE;

....Initialize semaphores Sema1 & SemazZ2...

pthread t thread1, thread2;

pthread_create(&threadN, NULL, threadNFunc, NULL);

for (int iterations = 1; ; iterations++)
XY =0;
sem_post(beginSema1 & beginSema2);
sem_wait(endSema1 & endSemaz2);

if (r1 ==0 && r2 ==0)
count_ OoOE ++;

Details of Demo 2: Pipeline Side Channel Setup

Scheduler Xen hypervisor: Popular
commercial laaS platforms

Xeon Processors ‘ lntel)

Shared multi-core/ multi-processor | TTRTETETITTIITT

hardware Xeon® 5500

e

8 logical CPU’s/ 4 cores ,
6 virtual machines (VM’s) '
Parallel Processing/ Simultaneous Multi-

PP L es

Threading On (SMT) i

Details for Demo 2: Pipeline Reordering

L: RL=R2/R3 IF | D . Bx WB

f 'l'Fn:u:-.-.md'ing :

L RE=RI*R1 & IF | D ! idle / Bx | WB

)

L;RL:=R&+R9 @ @ ! IF| D | Ex |WB

Details for Demo 2: Pipeline Reordering

CPUD P
Store Stone
Buffer Buffer
Lache Cache
Interconnect

